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Methylation of C residues in Cp( sites in the regulatory regions of a wide varietv of genes has been linked
1o silencing of their expression. During normal mammalian development, loss of methylation at specific
sites accompanies tissue-specific activation of genes. Overall decreases in the level of DNA methylation
and alterations in the pattern of methvlation of specific genes are also closely linked 1o tumor developmenti
in humans and other mammals. Dietary methyl deficiency sufficient to cause hepatocarcinogenesis in male
rats indices profound and rapid changes in the morphology and metabolic activity of liver cells. As we
have previously reported, these changes include a decrease in the overall level of DNA methylation and
alternations in the patterns of methylation and levels of transcripts of specific growth-related genes. These
alterations persist as long as the rats are maintained on a methyi-deficient diet.

The starting hvpothesis for the studies summarized here is that methyl deficiency induced changes in
liver cells that persist, even when dietary sources of methyl groups are restored. are more likely 1o be
critical for establishmeni of neoplasta than those that are reversible. We find that loss of methviation at
specific sites in liver DNA persisis for at least 9 weeks after restoration of methionine, choline, folate, and
vitamin B.. to the diet of rats previously deprived of these muarients for 4 weeks. Other molecular changes
are reversed in less than 3 weeks. This suggests that exposure of rats to alternating periods of dietary
methyl deficiency and sufficiency may provide an experimental model for determining whether persistent
alterations in methviation of growth regulutory genes allow affected hepuatocyies to escape constraints on
cell division because they respond to growth stimuli differently than cells in which the genes are normally
methvilared. (1. Nutr. Biochem. 3:672-680. 1993.)
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Introduction

Enzymatic addition of methyl groups to carbon S of
cytosine [C] residues in DNA can be considered the
cquivalent of introducing a fifth base. thus providing a
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mechanism for postsynthetic alteration of the informa-
tion content of the genome. In mammalian cells, the
most thoroughly documented function of this informa-
tion is in providing one level of regulation of gene ¢x-
pression.'” The presence of S5-methyl cytosine [SmC|
residues in DNA influences interaction between pro-
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teins and DNA. SmC residues in regulatory regions
of genes can directly prevent or enhance binding of
transcription factors.*-* 5SmC residues in DNA also ¢n-
hance binding of proteins that may serve to alter the
accessibility of DNA to transcription factors or to ¢n-
hance or stabilize the packaging of DNA into “inactive™
chromatin.>> Although interactions betwecen SmC resi-
dues in DNA and protein have generally been found
to have a ncgative influence on transcription. there is
no a priori reason to rule out the possibility that SmC
residues in specific sites in DNA might also enhance
transcription by blocking binding of negative regulatory
factors or cnh‘mcmg binding of positive regulatory fac-
tors. A positive correlation between gene expression
and methylation has been reported for a few genes.” ™

Mecthylation of DNA appcars to play an important
role in normal ecmbryonic development.'' Patterns of
methvlation of specific genes undergo characteristic
modification during development. Loss of methylation
at regulatory sites correlates with their activation in
specific tissues. There is evidence that inactivation of
one of the two X chromosomes in female mammalian
somatic cells involves DNA methylation and that allele-
specific methylation may be a factor in genomic im-
printing.'= 1"

Conversely, disruption of normal tissue-specific pat-
terns of DNA methylation has been implicated in devel-
opment of cancer. Many carcinogens block DNA
methylation either by direct alkylation and inactivation
of DNA methyltransferase or by forming adducts with
DNA that render it a poor substrate for the methyltrans-
ferase.™ = The SmC content of DNA from tumors and
tumor-derived cell ines is generally lower than that
observed in normal tissues.”” Hypomethylation of spe-
cific sites 1n proto-oncogenes such as c-mve. ¢-Ki-ras
and c¢-Fla-ras has been detected in a variety of human
and animal tumors.?* = Interference with methylation
in vivo has also been shown to lead to tumor formation
in animals. Feeding of methylation inhibitors such as 1.-
ethionine or S-azacvtidine and induction of decreased
ratios of AdoMet: Adolcy through dictary depletion of
methionine and choline have all been shown to induce
formation of tumors in the liver and other organs in
rats.-* U

In one of the best-studied examples of human tumor
progression, 1t has been shown that hypomethylation
of DNA 1s an carly cvent in the development of colon
cancer, although the changes observed do not always
correlate with changes in gene expression. =% In addi-
tion. some genes in the colon tumors become “hyper-
methvlated,” leading to the suggestion that silencing of
tumor suppressor genes by methylation may also play
a role in tumor dcwlopmcnt i

The studies summarized here represent our approach
to determining how loss of methylation at specific sites
in growth regulatory genes is related to the ability of
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altered hepatocytes to escape the normal constraints on
cell division.

Methods and materials
Animals and diet

The diets used were based on a semisynthetic formulation,
ADD-A1400. obtained from Research Diets. Inc.. New
Brunswick. NJ USA. This formulation lacks methionine. cho-
line. vitamin B,-. and fohic acid. Male Fischer 344 rats were
fed either a methyl-deficient diet [MDD-Dict A14403-ADD
supplemented with 9 g kg D.L-homocystine| or an adequate
diet [CSD-Dict A14404-ADD supplemented with S g DL-
methionine. 2 g choline chloride. 5 mg folic acid. and 100 pg
vitamin B12:kg|. MDD is more severely deficient in sources
of methyl donor than diets referred to by ather authors in
this series. ™ ™ However. during a 4-week course of feeding,
the effects of this dicton the liver cannot be distinguished from
those of a diet deficient solely in choline and methionine. !
To compare the etfects of MDD with effects of carcinogen
exposure, rats were fed ad libitum Purina chow (meal) (Rals-
ton Purina. St. Louis. MO USA) containing a carcinogenic
dose of 2-acetylaminofluorene [AAF-0.06%¢ wtwit] or DL-
ethionine [0.57 wt-wt] as indicated. All rats were cared for
in accordance with institutional guidelines. The diets, feeding
protocols. and methods for DNA and RNA methvltranster-
ase. DNA and RNA isolation. and for assavs of methvltrans-
ferase activity and evaluation of DNA methylation status of
bulk DNA and specific genes have been described. v »

Labeling index

BrdUrd [200 mg-Kilo] was injected intraperitoneally 1 hr prior
to sacrifice. One x 1.2 x 0.3-cm picees from each liver lobe
were fixed in neutral buffered formalin for 24 hr prior to
paraffin embedding. A representative section of ilcum was
processed on cach slide as a positive control for BrdUrd incor-
poration. For immunohistological staining. S-um sections
were mounted on shides coated with 0.5 gelatin in 0.05%
potassium dichromate. The sections were depariffinized. rehy-
drated. and sequentially digested with pepsin and a combina-
tion of EcoRI nuclease with Exonuclease 11 as described. ™
After incubation for 30 minin 0.3 H.QO. to block endogenous
peroxidase. the sections were incubated for 30 min with 0.1
bovine serum albumin in phosphate buffered saline to reduce
nonspecific antibody binding. Incubation with monoclonal
anti-BrdUrd (M-744, Dako Corp.. Carpinteria. CA USA) at
a dilution of 1:20 was carried out overnight at 4 C. ABC-
peroxidase staining was carricd out as described by the sup-
plier of reagents (Vectastain, Vector Laboratories, Inc.. Bur-
lingame. CA USA). Liver sections from untreated rats and
sections reacted with nonimmune goat [gG were used as nega-
tive controls. All sections were lightly counterstained with
hematoxylin prior to microscopic examination for labeled nu-
clei. accumulation of fat droplets. and altered morphology.
The labeling index (LI) was determined by counting the num-
ber of BrdUrd-labeled nuclei in 10 random X10 fields.

Results
Effects of methy! deficiency on nucleic acid
methvlation and gene expression

Short-term (1 to 4 week) feeding of MDD to rats leads
to significant hypomethylation of DNA and tRNA in
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the liver as determined by the ability of these nucleic
acids 1o serve as substrates for methyltransferases in
vitro* (Table ). The methyl group acceptance of DNA
isolated from the livers of rats fed MDD for 4 weeks is
3 to 4-fold higher than acceptance by DNA from livers
of rats CSD for the same period of time. Methyl accept-
ance of tRNA from the same livers is 5- to 10-fold higher
in rats fed MDD compared with CSD. This suggests
that during fecding of MDD both DNA and tRNA arc
being synthesized under conditions that are not optimal
for cfficient transfer of methyl groups, i.c.. that newly
synthesized nucleic acids are not being fully methylated
in vivo which makes them better methyl acceptors in
vitro. It can be concluded that hypomethylation does
not result from increased turnover or decreased synthe-
sis of methyltransterase because an increase in the activ-
ity of both DNA methyltransterase and N2-guanine
tRNA methyltransferase 118 (Table 1) is observed in
extracts from the same livers that contain hypomethyl-
ated nucleic acids. However, depletion of intracellular
pools of the methyl donor AdoMet and an increase in
levels of AdoHcey. a competitive inhibitor of AdoMet-
dependent methyl transfer reactions, that occur within
I week of feeding MDD (dict 5) are likely to account
for inhibition of nucleic acid methylation.

Feeding of MDD for periods of 1 to 4 weeks also
leads to a ime-dependent loss of methylation of specitic
CCGQG sites in the c-Ha-ras. c-fos. and ¢-mve genes that
can be detected as increased sensitivity to cutting by the
restriction endonuclease Hpall. Hpall cleaves CCGG
sites but not C3mCGG sites where SmC is present in
onc [hemi-methylated sites] or both strands [fully meth-
vlated sites]. The alteration in methylation patterns of
these genes is accompanied by an increasce in the levels
of their mRNA transcripts. It should be noted that the
effects of the diet on DNA methylation in the liver are
neither random nor universal. None of the genes studied
lost methylation at all CCGG sites. as would be indi-
cated by detecting the same cleavage pattern in Hpall-
and Mspl-digested DNA. CCGG sites in the ¢-Ki-ras
genes remain fully methylated. and ¢-Ki-ras mRNA fev-

¢ls do not change in the livers of rats fed MDD for 4
weceks. ™ These results suggest that methylation at some
CpG sites is maintained more efficiently than at others
when the supply of AdoMet is limiting. It remains to
be determined whether this difference is due to an etfect
of the sequence context of CpG sites on the activity of
mammalian DNA methyltransferase or to differences
1n association with specific nuclear proteins or in chro-
matin configuration at some CpG sites that himits their
ability to serve as substrates for DNA methvltransfer-
ase. '

It has been well documented that feeding of lipo-
trope-deficient diets to rats for periods as short as 1 week
causes fat accumulation in liver cells and a stimulation of
cell proliferation. >4 Although there is marked varia-
tion between animals in the degree of proliferative re-
sponse. feeding of MDD consistently leads to at Teast
a four-fold increase in the number of proliferating cells
within 24 to 96 hr (Table 2). The labeling index of liver

Table 2 tftect of dietary methyl deficcency ard supseqauen:
res'ora’ on of adeauate leveis ot metnyl groups on the :abeling ndex
in rat aver

De Days Bralrd { -3 Nucler
VDD 1 230 - 50 (8
4 ‘60 - "00:8)
28 200 - 80 (8)
CcsD 1 60 - 10 (4%
4 6o hH (4
28 g -2 4
56 Hoeot N
MDD for 28 days
followea by
CsD for : 46 ¢ 0
2 26 - 5
4 ‘6 -5
28 72

*Average number of peroxidase ( + ) nucler:10 x 10 helds = SE in
tissue shces denved from three cifferent areas of the lver The
numper of vers examined 1s indicatec in parentheses

Table 1 Reversibiity of diet-induced alterations 11 DNA and tRNA methylation and in levels of DNA and tRNA methyltransicrase act vities

in rat liver
Methyl acceptance n vtro Methyltrans‘erase activity

DNA 13NA DNA IRNA
Diet” (cpm x 10 " C'H.2ug) (cpm ~ *C - *CH.10pg) (cpm + G - C'H, mgproten) (cpr » 10 " *CH. g protein)
CSD. 4 weeks 51 08 32 5
MDD. 4 weeks 50 81 “00 2
MDD. 4 weeks
Followed by
CSD. 1 week 58 15 36 68
CSD 2 weeks 44 14 35 66

Data shown are from a representative experiment. Each point 1s the average vaiue for triplicate aeterminations in two separate assays on
pooled DNA or tRNA or enzyme extract from three amimals Vanation between determinations did not exceed = 8%. Adapted from data in

Reference 54

‘MDD s a methyl-deficient semisynthetic diet [ADD] supplemented with 9 g'kg D.L-homocystine: CSD 1s an adeauate diet. ADD. supplementea
with 5 g DL-methionine. 2 g choline chlornide. 5 mg fol'c acid. and 100 pg vitamin B.. 8 kg

674 J. Nutr. Biochem.. 1993. vol. 4, December



Methyl deficiency, DNA methylation, and cancer: Christman et al.

cells remains high throughout 4 weeks of feeding MDD
(Table 2). Fat accumulation can be detected within 48
hr in the liver cells of all animals fed MDD (Figure la).
Within 96 hr, large fat droplets are present in almost
all cells in the liver (Figure 1b): the fat content of the
liver continues to increase until, by 4 weeks. normal-
appearing hepatocytes are rarc.

Reversal of effects of MDD feeding

To determing the stability of the metabolic and morpho-
logical changes and changes in nucleic acid methylation
and gene expression induced in liver cells by short-term
dictary methyl deficiency. adequate levels of methio-
nine. choline. folate. and vitamin B,. (CSD) were re-
stored to the dict of rats fed MDD for 4 weeks. The
rate of cell proliferation. as indicated by incorporation
of BrdUrd into DNA. dropped precipitously within 24

o

&
- E
S

-

‘ L
o -

-~

Figure 1 Rapid effect of dietary methyl deficiency on accumulation
oflipidin rat iver. A: 48-hr teeding of MDD. Multiple large fat vacuoles
(unstained areas) are obvious in most hepatocytes. B: 96-hr feeding
of MDD Fat vacuoles are greatly expanded in size compared with
those seen at 48 hr. Normal hepatocyte morphology 1s severely
disrupted. Representative areas from formalin-fixed liver sections
processed as described in Methods and materials. Amimals were
imjected 1.p with BrdUrd 1 hr prior to harvesting liver. Solid arrows
indicate BrdUrd positive nuclei. Photomicrographs were taken at
1000 x magnification

hr and returned to the levels found in age-matched
animals continually maintained on CSD within a few
days (Table 2). The overall extent of DNA and RNA
mcthylation were restored to normal levels within 1 to
2 weeks of restoring lipotropes to the diet™ (Table 1).
At the same time, activities of DNA and tRNA methyl-
transferases in the liver dropped to normal values (Table
1). mRNA levels for all of the growth regulatory genes
studied also returned to control levels within 1 to 3
weeks. ™ Northern analysis of ¢c-myc mRNA levels is
shown as an example (Figure 2). In contrast. MDD-
induced hypomethylation of specific Hpall sites in c-
myve. c-fos, and c-Ha-ras genes persisted for up to 3
weceks after refeeding an adequate diet.™

We arce in the process of examining the cxtent of
methvlation of Hpall sites in these genes during an
extended period after restoring lipotropes to the diet
of rats fed MDD for 4 weceks. Southern blot analysis
of Hpall digests of the c-mye gene in DNA isolated
from rat liver during a course of feeding of MDD indi-
cates that fragments of ~ 1.7 and 1.5 kbp become more
abundant. and that there is progressive loss of Hpall
fragments >4.2 to 5 kbp™ (Figure 3. compare lanes |
and 2 in regtons indicated by arrows). Even though
sufficient levels of methyl donors are available to allow
normal methylation of tRNA and bulk DNA. these
alterations in the normal pattern of liver cell c-mve gene
methylation persist for at least 9 weeks (Figure 3. lanes
3-5). During the same period. the normal morphology
of the liver is slowly restored (Data not shown). Al-
though little cell proliferation is occurring (Table 2).
the number of normal-appearing hepatocytes increases
in a few days, presumably because seeretion of very low
density lipoprotein (VLDL) resumes after restoration
of methionine and choline to the diet.* However, even
after 4 weeks on an adequate dict. the livers of rats
previously fed MDD still have patches of cells with large
fat droplets.

A d - 472 kb

¢ 1.37 kb
-
C-MYC

Figure 2 Effect of dietary methy! deficiency and subsequent feed-
Ing of an adequate diet on levels of c-myc mRNA in rat liver. Northern
blot analysis of poly(A « ) RNA (5 nglane) of rats fed. lane 1. contro!
diet (CSD) for 4 weeks: lane 2. metnyl ceficient diet (MDD) for 4
weeks; lanes 3-5, CSD for 5 weeks; lanes 6-8, MDD for 4 weeks
followed by CSD for 1 week. Lanes 9-11. MDD for 4 weeks followed
by CSD for 3 weeks. RNAs in each lane were prepared from individ-
ua- livers. The blot was probed with pSVcmycl, which contains the
second and tnird exons ot the mouse ¢-myc gene All methods have
been previously described +
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Figure 3 tifect of dietary methy. defic ency and subsequent feco-
ing of an adequate d.et on methylation of CCGG sites n the c-myc
gene Southern blot anatysis of Hpall (lanes 1. 6) and Msgl (Lanes

8) digested ONAs from rats fed anes 17 control diet (CSD) for
4 weeks. lane 2. methy' defic.ent diet (MDD) for 4 weeks  ane 3
MDD for 4 weeks followed by CSD for 3 weeks. lanes 4.8. MDD for
4 weeks ‘ollowed by CSD for 6 weeks. Lane 5. MDD for 4 weeks
forowed by CSD for 9 weeks. Lane 6 CSD for 13 weeks Arrows
ind.cate ‘ragments whose concentrat.on was aitered i~ digests of
DNA from MDD-‘ed rats as compared with CSD-fed rats The blot
was probed wth a punfied 24 kbp Xbal-kindill fragrert tror
pSVemyct that includes the secord and third exon ¢f the mouse
c-myc gene "

Effect of MDD on p53 gene methylation and
expression

The p53 tumor suppressor gene product, which can act
as a transcription factor. 5" appears to negatively regulate
passage of cells through the cell cycle.™ » Cells lacking
functional p53 protein continue through S-phase after
DNA damage. while cells with normal pS3 protein arrest
in G,.”" It has been suggested that loss of p33 or func-
tional changes in p33 protein that prevent this block
might allow more frequent use of a damaged template
and fixation of mutagenic lesions. ! Expression of abnor-
mal p33 protein has been detected in livers of rats fed

676 J. Nutr. Biochem.. 1993. vol. 4. December

choline-deficient diets for 12 months.>* Although we
have not been able to detect increased p53 protein pro-
duction in rat liver after 4 weeks of feeding MDD by
immunohistochemical methods or by Western blotting
(data not shown), levels of pS3 mRNA increase mark-
cdly within 2 weeks (Figure 4. lanes 7. 8). This increase
is comparable to that found on feeding the hepatocarcin-
ogens AAF or D.L-cthionine for 2 to 4 weeks (Figure
4. lanes 1. 4. 5) and only slightly lower than that ob-
served in an AAF-induced tumor (Figure 4. lanc 9).
Hpall sites in the p33 gene(s) that become hypomethyl-
ated in DNA from livers of rats fed MDD (Figure 5.
compare lancs 1. 2 with lancs 3, 4) can be detected
using full-length human p353 ¢cDNA as probe.”* Similar
to what was observed for c-myve. ¢-Ha-ras, and c-fos
genes. loss of methylation at these sites persists for
at least 3 weeks (lanes 5.0 6). This suggests that
hypomethylation of the p33 gene may also act to
enhance its transcription. However. because there are
at least two p33 pscudogenes in the rat genome.™ it
will be necessary to localize the unmethylated Hpall

@‘*’é“"

OQ

$ S
v"Q&'&@ S @@Qv"

=4.72kb

Wes WO WH®-187kb

1 23 45 6 78 9

Figure 4 Effect o' carcinogen feeding or methyt deficiency on
levels of P53 mRNA :n rat iver. Northern blot ana ysis ot poly(A + )
RNA (5 ng -ane) of ra's fed  Lane *. 0.06% wt-wt AAF :n Pur-na chow
for 3 weeks. lares 2 3. Purnina chow rats age matched to those fed
carcinogens for 2 and 4 weeks respectively. lanes 4.5 0 5% wt'wt
DL-ethionine r Punina chow far 2 and 4 weeks. respectiveiy: -ane
6 CSD for 2 weeks. lane 7 MDD for 2 weeks. 1ane 8 Punna chow
for 10 mos . :ane 9. tumor induced by feeding of AAF for 8 mos Al
rats were 6 8 wecks od at the e feeaing of expermenal diets
was started. Female Fisher 344 rats were used for expenments with
D.L-ethionne feedirg because Tales are not susceptible to D.L-
cthicnine carcinogenesis. - Mae Fisher 344 rats were utiized for all
other experiments The blot was probed with a punfied 2 1 kb Bamtil
fragment fror pnp53c 1+ that cortairs the entrre cocing regon ¢
hrman ph3 cDNA
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Figure 5 Effect o' dietary methy deficiency and subsequent feed-
ing of an adequate diet o metaylatior of CCGG sites in the p53
gene. Southern blot analysis of Hpall (anes * 6) and Mspl (lane
7) digesied DNAs from rats fed lanes 1 control diet (CSD) for 4
weeks. lane 2. meinyl-deficient diet (MDD} for 1 week: anes 3.4.
MDD ior 4 weeks: lane 5. MDD for 4 weeks followec by CSD for 1
week: 1ane 6, MDD for 4 weeks followed by CSD for 3 weeks. Arows
ind ca'e fragments whose concentration was ircreased in digests
of DNA from tivers cf rats ‘ed MDD ‘or 4 weeks [lanes 34 cr MDD
for 4 weexs followed by CSD for 1 3 weeks [lares 5.6] as compared
witn animals fed CSD continuous y (lare 1). These additioral banas
indicate thal at east some CCGG sites in the 053 genc became
comp etey and nersistenty Lnmethylated dunng the penod ¢ dr-
etary methyl deficiency Tre olot was probec with a purfied 2 1 kb
BamH! fragment frerr php53c1 that contains the entire coding
region of human p53 cONA

sites in the active pS3 gene before a link between
the pattern of methylation of the p53 gene and it
expression can be cstablished.

Discussion

Because of the rapid disruption of normal liver cell
morphology and the large number of metabolic changes
induced by dictary lipotrope deficiency in rodents. it is

difficult to ascribe the diet’s ability to promote or cause
liver carcinogenesis to any one factor. Rapid fat accu-
mulation in livers with accompanying and continued
cveles of cell death and proliferation are likely to have
a promoting cffect on tumor development. acting to
favor the expansion of clones of initiated liver cells, 72
Potentially mutagenic radicals generated by increased
lipid peroxidation may also play the role of initiators
of hepatocarcinogenesis.™ ™ Our studies have focused
on carly changes in transmethvlation reactions that are
influenced by hepatic levels of AdoMet und AdoHey.
The results of these studies are consistent with the hy-
pothesis that the ability of hpotrope-deficient diets to
induce alterations in the pattern of DNA methvlation
contributes to their promoting and carcinogenic poten-
tial by allowing increased expression of some critical
gene or genes. However. it is highly unlikely that the
massive changes we detect in extent of methvlation in
specific DNA sequences during MDD feeding would
be possible in the absence of the proliferative eftect of
the diet. The complete disappearance of some large
Hpall fragments of the c-mve genes in the liver after 4
weeks of feeding MDD (Figure 3. lane 2) indicates that
at least one Hpall site in these fragments has become
completely unmethylated in virtually all copies of this
gene in the liver. It loss of methylation oceurs primarily
as a result of failure to methylate newly svnthesized
DNA atter replication. almost all of the cells in the liver
would have toundergo 2 to 3 rounds of DNA replication
in the absence of methvlation at these sites for such a
conversion to oceur.™

Our aim in studying the effect of restoring lipotropes
to the diets of rats ted MDD was to determine which
of the changes resulting from short-term exposure to
dictary methyl-deficiency are persistent and. thus, more
likely to be prencoplastic or neoplastic in nature.™
Among the parameters we have studied. changes in
patterns of methyvlation of specific genes proved to be
the most persistent, with some CCGG sites maintaining
their unmethylated status for as long as 9 weeks. Be-
cause the pereentage of proliferating liver cells returns
to a normal level within a few davs of restoring lipo-
tropes to rats fed MDD and overall levels of (RNA
and DNA methvlation return to normal in 1 to 2 weeks,
this persistent hvpomethylation cannot be the result of
continuing synthesis of hypomethylated DNA. Rather,
it indicates that de novo methvlation at the completely
unmethylated sites recognized by Hpall oceurs very
slowly. if at all. in adult rat hepatocvtes. It this is the
case. it can be predicted that the pattern of methvlation
of specitfic genes will return to normal only if hepato-
cvtes with hypomethylated sites in their DNA are re-
placed by cells with normal patterns of methylation
during liver cell turnover. This could occur if stem cells
in the liver were either better able to maintain normal
patterns of DNA methylation during feeding of a lipo-
trope-deficient diet or better able to methylate com-
pletely  unmethylated sites do novo  than mature
hepatoceytes.

While persistent hypomethvlation of c-mve. ¢-fos.,
and c¢-Ha-ras genes may be required for the sustained

J. Nutr. Biochem.. 1993. vol 4, December 677



Reviews

increase in transcript levels observed in the liver during
MDD feeding. it is clearly not sufficient to maintain
them in quiescent cells. Levels of c-myve. c-fos. and ¢-
Ha-ras mRNAs return to normal within 1 to 3 weeks
of restoring an adequate source of lipotropes to the dict
while hypomethvlation of these genes may persist for
up to 9 weeks. This suggests that transcription tactors
nceded for efficient expression of these genes mayv be
present only in mitogenically stimulated or proliferating
liver cells. However. if hvpomethylated growth regula-
tory genes are more readily activated than the corres-
ponding genes with normal patterns of methylaton for
adult liver, cells containing the hypomethylated genes
may be more likely to escape normal constraints on cell
division when exposed to low doses of carcinogen or to
mitogenic stimuli.

Current theories of carcinogenesis postulate  that
multiple gene alterations are necessary for the develop-
ment of malignant tumors.™ 7 These include activation
of several classes of oncegenes. inactivation or loss of
tumor suppressors. and changes in expression of genes
regulating metastasis. Activation of oncogenes can be
accomplished by mutation. amplification. or increased
levels of expression.™ Loss of the negative influence
of tumor suppressors on cell growth can oceur cither
through gene deletion or inactivation or introduction of
mutations that cause loss of function in the product of
one or both alleles. ™™

As described above. feeding of a lipotrope-deficient
diet feads to increased levels of p33 mRNA in the liver
and decreased methylation of sites in a p33 gene. This
result is the opposite of what would be expected if carly
silencing of p33 expression by increased methvlation of
the p53 gene plavs a role in the carcinogenic effects
of lipotrope deficiency. Because increases in both p3s3
mRNA and protein occur prior to DNA synthesis in
nontranstormed quicscent cells stimulated to enter the
cell eyele™ increased pS3 mRNA levels mav simply
reflect the fact that most of the cells in the liver of
lipotrope-deficient animals have been recruited from G,
into active cell division. A second possibility is that the
increase in p33 mMRNA represents a cellular response
to increased oxidative damage to DNA. Levels of pS3
protein have been shown to increase in response to
DNA damage.” This causes cells that produce normal
p33 to arrest in Gy and allows repair of DNA [esions,
Cells that do not express p33 protein or express a mutant
p>3 protein continue through S-phasce. presumably
allowing more frequent use of damaged DNA templates
and fixation of mutagenic lesions.”! Interestingly. it has
been reported that overproduction of normal p53 pro-
tein can lead to self aggregation and loss of function: a
correlation has been found between the elevated stabil-
ity of normal pS3 that results from self aggregation and
celt transtormation.™ Conversely, overexpression of
normal p33 protein can inhibit focus tormation by trans-
formed cells and cause apoptosis in cells lacking normal
pd3 function.”™ ™

The low levels of p33 protein found in normal cells
are the result of production of p33 protein with a charac-
teristically short half life.™ Our inability to detect in-
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creased levels of p33 protein in livers of rats fed MDD
for 4 weeks tends to favor the hypothesis that p33
mRNA levels in the livers of methyl-deficient rats arc
clevated in proportion to the number of cycling cells.
but that little pS3 protein accumulates because of its
rapid turnover. However. we cannot rule out the possi-
bility that overproduction of p33 protein occurs in a
small proportion of liver cells undergoing apoptosis. or
that with continued feeding of MDD some cells are
transtormed through overproduction of p33 protein.

There are a number of indications that common alter-
ations in gene expression oceur during the process of
hepatocarcinogenesis. regardless of the initiating carcin-
ogen or promoting regime. These include increased ex-
pression of ¢-myve and one or more members of the ras
gene tamily and decreased expression of cell surface
receptors such as the epidermal growth factor receptor
and the insulin receptor.'> Many of these alterations
are still present in liver tumor cells. For example. hyvpo-
methyvlation of CCGG sites in the region of the second
to third exon of the c-mye gene. the same sites that
become persistently hvpomethylated after feeding of o
methyl deticient diet, are a common feature of tumor-
derived celllines and human hepatomas.=+** Anincrease
in the level of pS3 mRNA appears to fall in this category
of changes. The same clevated levels of p33 mRNA are
found in AAF-induced liver tumors: in livers of rats
fed methyl-deficient diets: tivers of rats fed AAF. a
mutagenic carcinogen that forms DNA adducts: and
livers of rats fed t-ethionine. & nonmutagenic carcino-
gen that acts to inhibit transmethylation reactions.

The methvl-deticient diet employed in our studics is
so severe that it does not allow survival of rats tor the 70
to 80 weeks required for tumor formation.™ However,
feeding MDD for 1S weeks. followed by maintenance
on a chow dict. is sufficient to achieve a 24¢¢ incidence
of neoplastic nodules in the liver.™ suggesting that the
irreversible changes required for tumor development
oceur fairly rapidly with this dict. Studies are in progress
comparing the effects of MDD feeding on liver cell
division and gene expression in age-matched rats contin-
ually fed €SD and rats that have recovered from a 4-
week course of MDD feeding that still have hypometh-
vlated sites in liver DNA. These studies should allow
an cvaluation of the importance of persistent under-
methylation of growth regulatory genes for hepatocarci-
NOECNCSIS.

Although it is unlikely that human diets are cver as
severely methyl deficient as the experimental diet used
here.in many parts of the world it is not uncommon to
find dicts that are marginally deficient in lipotropes.™
In both rural and industrialized nations, excess intake
of alcohol. administration of certain therapeutic drugs,
and exposure to mycotoxins or chemical carcinogens are
notinfrequent.™ " ' Al of these factors are capable of
inhibiting DNA methylation cither by reducing AdoMet
levels. nactivating DNA methvltransferase. or modi-
fying DNA in such a way as to render it a poor substrate
for methylation. If unmethylated sites in specific genes
induced by exposure to intermittent exposure to dictary
methyl deficiency or other factors that inhibit DNA
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methylation are as resistant to de novo methylation as
the experimentally induced unmethylated sites detected
in our studies, it is possible that cumulative hypomethyl-
ation of genes could contribute to the causation of liver
cancer in humans.
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